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ABSTRACT

A vacuum spiral orbit tribometer (SOT) was used
to determine the relative lifetimes of a branched
perfluoropolyalkylether (PFPAE) on 440C stainless
steel.  The effect of varying the mean Hertzian
stress (0.75, 1.0, 1.5 and 2.0 GPa) and the use of
TiC coated balls on lubricant lifetime was studied.
Other conditions included: ∼100 rpm, ∼50 µg of
lubricant, an initial vacuum level of < 1.3 x 10-6 Pa
(< 1.0 x 10-8 Torr), and room temperature (∼23°C).
Increasing the mean Hertzian stress from 0.75 to
2.0 GPa results in an exponential decrease in
lubricant lifetime for both material combinations.
However, substituting a TiC ball for the 440C ball
quadrupled lifetime at low stress levels (0.75 and
1.0 GPa) and doubled life at higher stresses (1.5
and 2.0 GPa). The reduced reactivity of the TiC
surface with the PFPAE lubricant is considered to
be the reason for this enhancement. Decreasing
lifetime with increasing stress levels correlated well
with energy dissipation calculations.

INTRODUCTION

The materials revolution from improved steels to
new-generation, advanced materials, such as
technical ceramics, or wear resistant, low friction
coatings, made its introduction into ball bearing
technology several years ago. Today, much has

been published on the properties and advantages
of hybrid bearings (steel races and
ceramicessentially Si3N4balls), used on a
regular basis in machine tool applications. Pseudo-
hybrid bearings (steel races and ceramic
coatedessentially TiC-steelballs) are state-of-
the-art in many aerospace applications; e.g.,
inertial navigation instruments and space
mechanisms.  The properties of TiC coated balls
(1) to (3) and their performance in rolling contacts
have been reported (4), (5).

TiC coated balls have important features which
make them a favorable compromise to
conventional and hybrid bearings.  TiC balls have
the same bulk properties as steel balls (i.e.,
elasticity, thermal expansion, and density) and
therefore do not influence the bearing load
capacity and stiffness.  In addition, solid preloaded,
pseudo-hybrid bearings allow more thermal
excursions than hybrid bearings.  TiC coated balls
have similar surface properties as ceramic balls
(i.e., chemical inertness, hardness, low friction,
wear resistance, and smoothness) and therefore
do influence the surface-lubricant reactions during
asperity collisions (6).

Because of the improved surface roughness of TiC
coated balls, less asperity interactions occur.
When interactions do occur, there is a strongly
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decreased tendency for micro-welding,
accompanied by negligible material transfer and
surface roughening. The raceway surface
deterioration in a pseudo-hybrid bearing was found
to be much less than for conventional, all-steel
bearings (7).

Initially, TiC coated balls were developed to
operate in bearings for space mechanisms without
lubrication.  Although some of these dry bearings
are still used in space, the great majority of
applications utilize conventional liquid lubricants
and greases.  For example, the GOES weather
satellite program uses TiC coated balls for all of
their perfluoropolyalkylether (PFPAE) lubricated
bearings.

A series of branched polymeric PFPAEs are
detailed in Reference (8). All unformulated
PFPAEs function in a corrosive wear mode during
mixed or boundary lubrication (9). This wear mode,
which results in the formation of surface fluorides,
allows lubricated contacts to survive without
catastrophic failure. However, these surface
fluorides accelerate the destruction of the PFPAE,
eventually resulting in contact failure as the
lubricant is totally consumed.  It has been shown
by Carré (10) that the substitution of solid ceramic
balls (silicon nitride) or TiN coatings can extend the
performance of PFPAEs by a factor of 5 to 10
times. This same study showed a decrease in
bearing lifetime with increasing Hertzian stress.

The objective of this work was twofold. First, the
effect of a range of mean Hertzian stress (0.75,
1.0, 1.5, and 2.0 GPa) on lubricant lifetime of a
branched perfluoropolyalkylether (143AC) with
440C steel was studied using a vacuum Spiral
Orbit tribometer (SOT). Secondly, the effect of
substituting a TiC coated steel ball under the same
conditions was determined. Other conditions
included: ∼100 rpm, ∼50 µg of lubricant, room
temperature (∼23 °C), and an initial vacuum of
< 1.33 x 10-6 Pa (< 1.0 x 10-8 Torr).

EXPERIMENTAL

The NASA Spiral Orbit rolling contact tribometer
(SOT) was used for all tests. This device (Figure 1)
is essentially a thrust bearing using a single
bearing ball and two flat races having contact
stresses and ball motions similar to those in an
angular contact ball bearing. This tribometer is fully

described in Reference (11). Other details appear
in References (12) and (13).

Figure 1 – The spiral orbit tribometer (SOT).

Balls and plates are cleaned with a series of
solvents and a final cleaning using UV-ozone. The
ball is then lubricated with approximately 50
micrograms of the PFPAE (143 AC). This is
accomplished by placing droplets of a Freon 113
solution of the PFPAE on a rotating ball. As the
solvent evaporates, a lubricant film is deposited.
The final lubricant charge is determined by
weighing the ball before and after deposition using
a microgram balance. The plates are initially
unlubricated.

The ball is placed between the plates and loaded
to the desired stress. When the chamber pressure
level reaches 1.3 x 10-6 Pa (1.0 x 10-8 Torr), the test
is automatically started. As the upper plate rotates
(100 rpm), the ball is driven in a spiral orbit. At this
speed, the system operates in the boundary
lubrication regime. A transducer in the mounting
arm of the guide plate (Figure 1) measures the
force required to nudge the ball back to the starting
point of the original orbit. As the lubricant is
consumed during the rolling process, this force
increases until at some predetermined friction
coefficient (0.38 for these tests) the test is
automatically terminated. A typical coefficient of
friction as a function of test time appears in
Figure 2.
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Figure 2 – Typical friction trace as a function of ball orbits for a
SOT test (1.5 GPa, TiC coated ball).

In addition, other parameters (contact resistance
and system pressure) are monitored during the
test. An example of system pressure as a function
of test duration for the test from Figure 2 appears
in Figure 3.

Figure 3 – Typical pressure data as a function of ball orbits for
a SOT test (1.5 GPa, TiC ball).

RESULTS

LUBRICANT LIFETIMES

The effect of mean Hertzian contact stress on
lubricant lifetime is shown in Figure 4. Each
condition represents from four to eight tests,
except for the 2.0 GPa TiC condition that was only
run twice. Normalized lubricant lifetime as the
number of orbits per microgram of lubricant is
plotted for four different mean stress levels (0.75,

1.0, 1.5, and 2.0 GPa). In addition, data for TiC
coated balls under the same conditions are shown.

A decrease in lubricant lifetime that is apparently
exponential as a function of contact stress is
evident for both material combinations. However, it
is also clear that the substitution of a TiC coated
ball enhances lubricant lifetime at all conditions.
Life is quadrupled at 0.75 and 1.0 GPa and
doubled at 1.5 and 2.0 GPa.
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Figure 4 – Effect of Hertzian stress on lubricant lifetime using
440C and TiC coated bearing balls.

SURFACE CHEMICAL ANALYSIS

Several balls from selected tests were analyzed at
test conclusion with X-ray photoelectron
spectroscopy (XPS) and µ-Fourier Transform
Infrared Spectroscopy (µ-FTIR). In addition, a
440C ball run to 2,200 orbits at 1.5 GPa (∼half-life)
was also analyzed. Minimal amount of metallic
fluoride is seen on the half-life test. In contrast, a
large amount of metallic fluoride is evident on the
specimen run to test conclusion. Surface fluoride
was evident on all balls run to test conclusion.
However, the amount of fluoride was quite
variable. There was no correlation with stress
level.

DISCUSSION

The Hertzian contact region in a rolling element
bearing is essentially a microchemical reactor. In
this high-pressure region, the lubricant can
undergo chemical reactions due to the asperity
interactions and catalytic effects of the surfaces.
For PFPAE lubricants, these reactions include:
chain scission, cross-linking, unzipping,
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defluorination, and eventual conversion into a
graphitic amorphous carbon (14).

In the spiral orbit tribometer, most of the orbit
represents the normal rolling with pivot (15) that is
seen in instrument bearings.  When the spiraling
ball contacts the guide plate, it is forced back into
the original (smaller radius) orbit. During this
process, termed the scrub, pure sliding takes place
between the ball and upper plate. The length of the
scrub is typically about 4 mm. The force generated
during the scrub allows the coefficient of friction to
be determined.

ENERGY DISSIPATION

Energy is dissipated in the Hertzian contact as a
result of pivoting during the rolling portion of the
orbit and in the scrub, at the pure sliding contact at
the upper plate. This energy dissipation is the
driving force for lubricant degradation.  It is obvious
that for PFPAEs, in general, degradation is
initiated immediately during the rolling process
because there is an immediate rise in system
pressure and an appearance of PFPAE fragments
in the residual gas analysis. In addition, the
intensity of fluorocarbon fragment emission
increases during the scrub.

A detailed analysis of energy loss during
rolling/sliding in a 3-ball system appears in
Reference (11) and can be applied to the present
one ball operation. The total energy dissipation per
unit time is termed “severity.”  The severity can be
integrated over the time of a complete orbit. Since
the lubricant is only on the ball (at least initially),
the fraction of the ball’s surface rolled upon per
orbit must also be considered. Then, assuming
that lubricant lifetime is inversely proportional to
the energy dissipated during an orbit, a relative
lifetime can be calculated at different stresses.
This data, plotted as a function of load, appears in
Figure 5. All lifetime data is normalized to the
highest load. Experimental data for both 440C and
TiC coated balls appear as well. There is good
agreement between the calculated and
experimental results. Thus, the load dependence
on lubricant lifetime may be understood on the
basis of lubricant degradation by frictional energy
dissipation at the ball/plate contacts.
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Figure 5 – Relative lifetime of a PFPAE (143AC) as a function
of load in the spiral orbit tribometer.

RATE OF LUBRICANT DEGRADATION

As stated earlier, lubricant degradation
immediately commences as the ball starts to roll
and increases by an order of magnitude during the
scrub. By studying the friction force and pressure
curves during a test, it appears that this
degradation is relatively constant until late into the
test. For the branched PFPAE, there is a rise in
system pressure at about 80 to 90 percent of life
followed by an abrupt increase in friction, which
results in test termination.  µ-FTIR analysis of the
balls indicates very little lubricant remaining and
what is left is severely degraded. XPS analysis
indicates the formation of metallic surface fluoride.

Zehe and Faut (16) have shown that reactions of a
linear PFPAE fluid and iron oxide powder involves
a two-stage process. The first stage is the slow
catalytic decomposition of the PFPAE, which
generates highly reactive fluorocarbon species that
attack and eventually convert the oxide to fluoride.
The second stage involves the rapid degradation
of the PFPAE by the much more catalytic iron
fluoride. This appears to be the process involved
here.

TIC VERSUS 440C

Shogrin et al. (17) performed ball on disc pure
sliding experiments with 440C specimens
implanted with various species (disc only) and
lubricated with PFPAE (143 AC). Lubricated
lifetimes were enhanced by implantation with either
Ti or a combination of Ti + C. It was postulated that
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these implanted species produced a passivating
layer that reduced the catalytic degradation of the
lubricant, thus increasing lifetime. The life
enhancement using TiC coated balls in the current
study is considered to be a similar phenomenon.

CONCLUSIONS

For space bearing applications where
perfluoropolyalkylether (PFPAE) lubricants are
chosen, the use of TiC coated steel balls is
beneficial.

The lifetimes of PFPAE lubricants used for long-
term space applications will be adversely affected
at high Hertzian contact stresses.

The life enhancement gained by using TiC coated
balls instead of 440C steel balls decreases with
increasing stress level.

Relative lubricant lifetime can be correlated with
the severity of energy dissipation in the
rolling/sliding contacts.
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